Grp78 Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance

نویسندگان

  • Risheng Ye
  • Dae Young Jung
  • John Y. Jun
  • Jianze Li
  • Shengzhan Luo
  • Hwi Jin Ko
  • Jason K. Kim
  • Amy S. Lee
چکیده

OBJECTIVE To investigate the role of the endoplasmic reticulum (ER) chaperone glucose-regulated protein (GRP) 78/BiP in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. RESEARCH DESIGN AND METHODS Male Grp78(+/-) mice and their wild-type littermates were subjected to a high-fat diet (HFD) regimen. Pathogenesis of obesity and type 2 diabetes was examined by multiple approaches of metabolic phenotyping. Tissue-specific insulin sensitivity was analyzed by hyperinsulinemic-euglycemic clamps. Molecular mechanism was explored via immunoblotting and tissue culture manipulation. RESULTS Grp78 heterozygosity increases energy expenditure and attenuates HFD-induced obesity. Grp78(+/-) mice are resistant to diet-induced hyperinsulinemia, liver steatosis, white adipose tissue (WAT) inflammation, and hyperglycemia. Hyperinsulinemic-euglycemic clamp studies revealed that Grp78 heterozygosity improves glucose metabolism independent of adiposity and following an HFD increases insulin sensitivity predominantly in WAT. As mechanistic explanations, Grp78 heterozygosity in WAT under HFD stress promotes adaptive unfolded protein response (UPR), attenuates translational block, and upregulates ER degradation-enhancing alpha-mannosidase-like protein (EDEM) and ER chaperones, thus improving ER quality control and folding capacity. Further, overexpression of the active form of ATF6 induces protective UPR and improves insulin signaling upon ER stress. CONCLUSIONS HFD-induced obesity and type 2 diabetes are improved in Grp78(+/-) mice. Adaptive UPR in WAT could contribute to this improvement, linking ER homeostasis to energy balance and glucose metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of aerobic exercise on epicardial adipose tissue, insulin resistance, and some liver enzymes in high-fat diet-induced obesity male wistar rat

Background and Aim: Due to the prevalence and socio-economic consequences of obesity in mortality, cardiovascular (CAD) and nonalcoholic fatty liver disease the effectiveness of aerobic exercise on epicardial adipose tissue (EAT), insulin resistance (IR) and some liver enzymes of high-fat diet-induced obesity male wistar rats was investigated. Methods: Thirty-two male Wistar rats with an averag...

متن کامل

Momordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice

Objective(s): The present study was aimed to evaluate the effect of methanolic fruit extract of Momordica cymbalaria (MeMC) against high-fat diet-induced obesity and diabetes in C57BL/7 mice.Materials and Methods: In the present study, six weeks old male C57BL/6 mice were divided into four groups. G-1 and G-2 served as lean control and HFD control, G-3 and G-4 received MeMC 25 and 50 mg/kg, BW ...

متن کامل

The effects of high fat diet-induced obesity and interval and continuous exercise training on visceral fat SIRT1 and insulin resistance in male rats

Introduction. The aim of this study was to investigate the effects of high fat diet-induced obesity and interval and continuous exercise training on visceral fat SIRT1 and insulin resistance in male rats.  Method. Forty male rats were divided into two groups: high-fat diet (HFD; n=32) and standard diet (C; n=8). After 10 weeks inducing obesity, eight rats from the HFD and C groups were sacrifi...

متن کامل

Lecithin cholesterol acyltransferase null mice are protected from diet-induced obesity and insulin resistance in a gender-specific manner through multiple pathways.

Complete lecithin cholesterol acyltransferase (LCAT) deficiency uniformly results in a profound HDL deficiency. We recently reported unexpected enhanced insulin sensitivity in LCAT knock-out mice in the LDL receptor knock-out background (Ldlr(-/-)×Lcat(-/-); double knock-out (DKO)), when compared with their Ldlr(-/-)×Lcat(+/+) (single knock-out (SKO)) controls. Here, we report that LCAT-deficie...

متن کامل

Protein Tyrosine Phosphatase 1B and Insulin Resistance: Role of Endoplasmic Reticulum Stress/Reactive Oxygen Species/Nuclear Factor Kappa B Axis

Obesity-induced endoplasmic reticulum (ER) stress has been proposed as an important pathway in the development of insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and is tethered to the ER-membrane. The aim of the study was to determine the mechanisms involved in the crosstalk between ER-stress and PTP1B. PTP1B whole body knockout and C57B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010